Wednesday, January 28, 2026
Trusted News Since 2020
American News Network
Truth. Integrity. Journalism.
US Tech & AI

Google’s upgraded Nano Banana Pro AI image model hailed as ‘absolutely bonkers’ for enterprises and users

By Eric November 23, 2025

Google DeepMind has recently unveiled its latest innovation, the Gemini 3 Pro Image, also known as Nano Banana Pro, which is already making waves in the developer and enterprise AI communities. This cutting-edge model is designed to generate high-quality, structured visuals with remarkable accuracy and efficiency, setting a new standard for multimodal image generation. Unlike previous models that catered primarily to casual users or artistic applications, Gemini 3 Pro Image is engineered for professional use, integrating seamlessly across Google’s AI ecosystem, including Gemini API, Vertex AI, and Workspace applications. With its ability to produce complex diagrams, infographics, and even logos from simple text prompts, the model has garnered enthusiastic responses, with one developer describing its capabilities as “absolutely bonkers.”

The Gemini 3 Pro Image stands out for its structured multimodal reasoning capabilities, allowing it to generate visuals that convey clear intent and factual grounding. Users can create a wide range of outputs, from UX flows and educational diagrams to storyboards and mockups, all while maintaining layout fidelity and consistency across multiple subjects. This model is particularly valuable for enterprise applications, where high-resolution outputs (up to 4K) and real-time localization are essential. For instance, Dr. Derya Unutmaz, an immunologist, praised the model for generating a comprehensive medical illustration of CAR-T cell therapy stages, while AI educator Dan Mac was astounded by its ability to create an accessible visual guide on transformer models. With benchmarks indicating superior performance in visual quality and infographic generation compared to its peers, Gemini 3 Pro Image is poised to revolutionize how enterprises produce and manage visual content.

Moreover, Gemini 3 Pro Image incorporates Google’s SynthID watermarking technology, ensuring that every generated image can be traced back to its AI origins, a critical feature for compliance in sectors like healthcare and education. The model’s pricing is competitive, with tiered options based on resolution and usage, making it accessible for developers and enterprise teams. As the demand for sophisticated visual content grows, Gemini 3 Pro Image not only enhances creative workflows but also positions itself as a vital tool for data documentation and communication in professional settings. With its integration into various Google platforms, this model signifies a pivotal shift in generative AI, emphasizing that the future of AI will not only be about text and speech but also about compelling visual storytelling.

Infographics rendered without a single spelling error. Complex diagrams one-shotted from paragraph prompts. Logos restored from fragments. And visual outputs so sharp with so much text density and accuracy, one developer simply called it “absolutely bonkers.”
Google DeepMind’s
newly released Nano Banana Pro
—officially Gemini 3 Pro Image—has drawn astonishment from both the developer community and enterprise AI engineers.
But behind the viral praise lies something more transformative: a model built not just to impress, but to integrate deeply across Google’s AI stack—from Gemini API and Vertex AI to Workspace apps, Ads, and Google AI Studio.
Unlike earlier image models, which targeted casual users or artistic use cases, Gemini 3 Pro Image introduces studio-quality, multimodal image generation for structured workflows—with high resolution, multilingual accuracy, layout consistency, and real-time knowledge grounding. It’s engineered for technical buyers, orchestration teams, and enterprise-scale automation, not just creative exploration.
Benchmarks already show the model outperforming peers in overall visual quality, infographic generation, and text rendering accuracy. And as real-world users push it to its limits—from medical illustrations to AI memes—the model is revealing itself as both a new creative tool and a visual reasoning system for the enterprise stack.
Built for Structured Multimodal Reasoning
Gemini 3 Pro Image isn’t just drawing pretty pictures—it’s leveraging the reasoning layer of Gemini 3 Pro to generate visuals that communicate structure, intent, and factual grounding.
The model is capable of generating UX flows, educational diagrams, storyboards, and mockups from language prompts, and can incorporate up to 14 source images with consistent identity and layout fidelity across subjects.
Google describes the model as “a higher-fidelity model built on Gemini 3 Pro for developers to access studio-quality image generation,” and confirms it is now available via Gemini API, Google AI Studio, and Vertex AI for enterprise access.
In Antigravity, Google’s new AI vibe coding platform built by the former Windsurf co-founders it hired earlier this year, Gemini 3 Pro Image is already being used to create dynamic UI prototypes with image assets rendered before code is written. The same capabilities are rolling out to Google’s enterprise-facing products like Workspace Vids, Slides, and Google Ads, giving teams precise control over asset layout, lighting, typography, and image composition.
High-Resolution Output, Localization, and Real-Time Grounding
The model supports output resolutions of up to 2K and 4K, and includes studio-level controls over camera angle, color grading, focus, and lighting. It handles multilingual prompts, semantic localization, and in-image text translation, enabling workflows like:
Translating packaging or signage while preserving layout
Updating UX mockups for regional markets
Generating consistent ad variants with product names and pricing changed by locale
One of the clearest use cases is infographics—both technical and commercial.
Dr. Derya Unutmaz, an immunologist, generated a full medical illustration describing the stages of CAR-T cell therapy from lab to patient, praising the result as “perfect.” AI educator Dan Mac created a visual guide explaining transformer models “for a non-technical person” and called the result “unbelievable.”
Even complex structured visuals like full restaurant menus, chalkboard lecture visuals, or multi-character comic strips have been shared online—generated in a single prompt, with coherent typography, layout, and subject continuity.
Benchmarks Signal a Lead in Compositional Image Generation
Independent GenAI-Bench results show Gemini 3 Pro Image as a state-of-the-art performer across key categories:
It ranks highest in
overall user preference
, suggesting strong visual coherence and prompt alignment.
It leads in
visual quality
, ahead of competitors like GPT-Image 1 and Seedream v4.
Most notably, it dominates in
infographic generation
, outscoring even Google’s own previous model, Gemini 2.5 Flash.
Additional benchmarks released by Google show Gemini 3 Pro Image with lower text error rates across multiple languages, as well as stronger performance in image editing fidelity.
The difference becomes especially apparent in structured reasoning tasks. Where previous models might approximate style or fill in layout gaps, Gemini 3 Pro Image demonstrates consistency across panels, accurate spatial relationships, and context-aware detail preservation—crucial for systems generating diagrams, documentation, or training visuals at scale.
Pricing Is Competitive for the Quality
For developers and enterprise teams accessing Gemini 3 Pro Image via the Gemini API or Google AI Studio, pricing is tiered by resolution and usage.
Input tokens for images are priced at $0.0011 per image (equivalent to 560 tokens or $0.067 per image), while output pricing depends on resolution: standard 1K and 2K images cost approximately $0.134 each (1,120 tokens), and high-resolution 4K images cost $0.24 (2,000 tokens).
Text input and output are priced in line with Gemini 3 Pro: $2.00 per million input tokens and $12.00 per million output tokens when using the model’s reasoning capabilities.
The free tier currently does not include access to Nano Banana Pro, and unlike free-tier models, the paid-tier generations are not used to train Google’s systems.
Here’s a comparison table of major image-generation APIs for developers/enterprises, followed by a discussion of how they stack up (including the tiered pricing for Gemini 3 Pro Image / “Nano Banana Pro”).
Model / Service
Approximate Price per Image or Token-Unit
Key Notes / Resolution Tiers
Google – Gemini 3 Pro Image (Nano Banana Pro)
Input (image): ~$0.067 per image (560 tokens). Output: ~$0.134 per image for 1K/2K (1120 tokens), ~$0.24 per image for 4K (2000 tokens). Text: $2.00 per million input tokens & $12.00 per million output tokens (≤200k token context)
Tiered by resolution; paid-tier images are
not
used to train Google’s systems.
OpenAI – DALL-E 3 API
~ $0.04/image for 1024×1024 standard; ~$0.08/image for larger/resolution/HD.
Lower cost per image; resolution and quality tiers adjust pricing.
OpenAI – GPT-Image-1 (via Azure/OpenAI)
Low tier ~$0.01/image; Medium ~$0.04/image; High ~$0.17/image.
Token-based pricing – more complex prompts or higher resolution raise cost.
Google – Gemini 2.5 Flash Image (Nano Banana)
~$0.039 per image for 1024×1024 resolution (1290 tokens) in output.
Lower cost “flash” model for high-volume, lower latency use.
Other / Smaller APIs (e.g., via third-party credit systems)
Examples: $0.02–$0.03 per image in some cases for lower resolution or simpler models.
Often used for less demanding production use cases or draft content.
The Google Gemini 3 Pro Image
/ Nano Banana Pro
pricing sits at the upper end: ~$0.134 for 1K/2K, ~$0.24 for 4K, significantly higher than the ~$0.04 per image baseline for many OpenAI/DALL-E 3 standard images.
But the higher cost might be justifiable if: you require 4K resolution; you need enterprise-grade governance (e.g., Google emphasizes that paid-tier images are
not
used to train their systems); you need a token-based pricing system aligned with other LLM usage; and you already operate within Google’s cloud/AI stack (e.g., using Vertex AI).
On the other hand, if you’re generating large volumes of images (thousands to tens of thousands) and can accept lower resolution (1K/2K) or slightly less premium quality, the lower-cost alternatives (OpenAI, smaller models) offer meaningful savings — for instance, generating 10,000 images at ~$0.04 each costs ~$400, whereas at ~$0.134 each it’s ~$1,340. Over time, that delta adds up.
SynthID and the Growing Need for Enterprise Provenance
Every image generated by Gemini 3 Pro Image includes SynthID, Google’s imperceptible digital watermarking system. While many platforms are just beginning to explore AI provenance, Google is positioning SynthID as a core part of its enterprise compliance stack.
In the updated Gemini app, users can now upload an image and ask whether it was AI-generated by Google—a feature designed to support growing regulatory and internal governance demands.
A Google blog post emphasizes that provenance is no longer a “feature” but an operational requirement, particularly in high-stakes domains like healthcare, education, and media. SynthID also allows teams building on Google Cloud to differentiate between AI-generated content and third-party media across assets, use logs, and audit trails.
Early Developer Reactions Range from Awe to Edge-Case Testing
Despite the enterprise framing, early developer reactions have turned social media into a real-time proving ground.
Designer
Travis Davids
called out a one-shot restaurant menu with flawless layout and typography: “Long generated text is officially solved.”
Immunologist
Dr. Derya Unutmaz
posted his CAR-T diagram with the caption: “What have you done, Google?!” while
Nikunj Kothari
converted a full essay into a stylized blackboard lecture in one shot, calling the results “simply speechless.”
Engineer
Deedy Das
praised its performance across editing and brand restoration tasks: “Photoshop-like editing… It nails everything…By far the best image model I’ve ever seen.”
Developer
Parker Ortolani
summarized it more simply: “Nano Banana remains absolutely bonkers.”
Even meme creators got involved.
@cto_junior
generated a fully styled “LLM discourse desk” meme—with logos, charts, monitors, and all—in one prompt, dubbing Gemini 3 Pro Image “your new meme engine.”
But scrutiny followed, too. AI researcher
Lisan al Gaib
tested the model on a logic-heavy Sudoku problem, showing it hallucinated both an invalid puzzle and a nonsensical solution, noting that the model “is sadly not AGI.”
The post served as a reminder that visual reasoning has limits, particularly in rule-constrained systems where hallucinated logic remains a persistent failure mode.
A New Platform Primitive, Not Just a Model
Gemini 3 Pro Image now lives across Google’s entire enterprise and developer stack: Google Ads, Workspace (Slides, Vids), Vertex AI, Gemini API, and Google AI Studio. It’s also deployed in internal tools like Antigravity, where design agents render layout drafts before interface elements are coded.
This makes it a first-class multimodal primitive inside Google’s AI ecosystem, much like text completion or speech recognition.
In enterprise applications, visuals are not decorations—they’re data, documentation, design, and communication. Whether generating onboarding explainers, prototype visuals, or localized collateral, models like Gemini 3 Pro Image allow systems to create assets programmatically, with control, scale, and consistency.
At a time when the race between OpenAI, Google, and xAI is moving beyond benchmarks and into platforms, Nano Banana Pro is Google’s quiet declaration: the future of generative AI won’t just be spoken or written—it will be seen.

Related Articles

The best smart rings for tracking sleep and health
US Tech & AI

The best smart rings for tracking sleep and health

Read More →
Creating a glass box: How NetSuite is engineering trust into AI
US Tech & AI

Creating a glass box: How NetSuite is engineering trust into AI

Read More →
EU investigates Google over AI-generated summaries in search results
US Tech & AI

EU investigates Google over AI-generated summaries in search results

Read More →